Authors |
Yunin Aleksey Petrovich, Specialist, Penza Research Institute of Electrical Engineering (9 Sovetskaya street, Penza, Russia), E-mail: pniei@penza.ru
Ivanov Aleksandr Ivanovich, Doctor of engineering sciences, associate professor, head of the laboratory of biometric and neural network technologies, Penza Research Institute of Electrical Engineering (9 Sovetskaya street, Penza, Russia), E-mail: ivan@pniei.penza.ru
Ratnikov Kirill Andreevich, Specialist, Penza Research Institute of Electrical Engineering (9 Sovetskaya street, Penza, Russia), E-mail: pniei@penza.ru
Kol'chugina Elena Anatol'evna, Doctor of engineering sciences, professor, sub-department of computer software and application, Penza State University (40 Krasnayа street, Penza, Russia), E-mail: kea@pnzgu.ru
|
Abstract |
Background. The aim of the work is to increase the correctness of calculating the entropy of long codes with weakly dependent bits generated by neural network biometrics-code converters or hashing of biometric data using lightweight cryptography.
Materials and methods. The classical Shannon procedures cannot be used for calculations, since they require the use of huge statistical material. To reduce the cost of computing resources, the display of ordinary codes to the Hamming convolution space is used.
Results. It is suggested to consider a portrait of white noise in the Hamming convolution system obtained in different namber systems. This is equivalent to the test of a set of monkeys, each of which simultaneously prints on a variety of printing machines of completely different designs, created for different languages and different writing systems. The more printing machines are used, the faster a lot of monkeys will jointly create an intelligent phrase in one of possible languages.
Conclusions. In the space of the Hamming convolution set, the white noise quality estimate becomes correct if we know in advance the distribution parameters of the controlled convolutions. At the same time, the reliability of the estimates is higher, the more the various Hamming convolutions are controlled and the higher the dimension of the calculated functionals. Since NIST USA recommends about 16 randomness tests, it is suggested to apply at least 16 types of Hamming convolutions constructed for various number systems.
|
References |
1. Volchikhin V. I., Ivanov A. I., Funtikov V. A. Bystrye algoritmy obucheniya neyrosetevykh mekhanizmov biometriko-kriptograficheskoy zashchity informatsii: monografiya [Fast algorithms for training of neural network mechanisms of biometriccryptographic information protection: monograph]. Penza: Izd-vo PGU, 2005, 273 p.
2. Malygin A. Yu., Volchikhin V. I., Ivanov A. I., Funtikov V. A. Bystrye algoritmy testirovaniya neyrosetevykh mekhanizmov biometriko-kriptograficheskoy zashchity informatsii [Fast algorithms for testing of neural networks mechanisms of biometriccryptographic information protection]. Penza: Izd-vo PGU, 2006, 161 p.
3. Tekhnicheskaya spetsifikatsiya (proekt, publichnoe obsuzhdenie nachato s 01.02.2017 chlenami TK 26 «Kriptograficheskaya zashchita informatsii»). Zashchita neyrosetevykh biometricheskikh konteynerov s ispol'zovaniem kriptograficheskikh algoritmov [Technical specification (draft, public discussion initiated on 01.02.2017 by members of TC 26 “Cryptographic protection of information”). Protection of neural network biometric containers using cryptographic algorithms]. Available at: https://tc26.ru
4. Dodis Y., Reyzin L., Smith A. Proc. EUROCRYPT. 2004, April 13, pp. 523–540.
5. Monrose F., Reiter M., Li Q., Wetzel S. Proc. IEEE Symp. on Security and Privacy. 2001, pp. 202–213.
6. Ramírez-Ruiz J., Pfeiffer C., Nolazco-Flores J. Advances in Artificial Intelligence – IBERAMIA-SBIA. 2006 (LNCS 4140), pp. 178–187.
7. Hao F., Anderson R., Daugman J. IEEE TRANSACTIONS ON COMPUTERS. 2006, vol. 55, no. 9, pp. 1073–1074.
8. Ivanov A. I. Pervaya milya [First mile]. 2015, no. 1, pp. 40–47.
9. Ivanov A. I. Zashchita informatsii. INSAYD [Information protection. INSIDE]. 2014, no. 3, pp. 32–39.
10. Ivanov A. I., Zakharov O. S. Sreda modelirovaniya «BioNeyroAvtograf». Programmnyy produkt sozdan laboratoriey biometricheskikh i neyrosetevykh tekhnologiy, razmeshchen s 2009 g. na sayte AO «PNIEI» [Simulating environment “BioNeuroAutograph”. The software created by the laboratory of biometric and neural network technologies, has been available since 2009 on the site of JSC “PNIEI”]. Available at: www.pniei.rf, http://pniei.rf/activity/science/noc./bioneuroautugraph.zi.
11. Ivanov A. I. Avtomaticheskoe obuchenie bol'shikh iskusstvennykh neyronnykh setey v biometricheskikh prilozheniyakh: ucheb. posobie k paketu laboratornykh rabot, vypolnyaemykh v srede modelirovaniya «BioNeyroAvtograf» [Automatic training of large artificial neural networks in biometric applications: tutorial to a set of laboratory works in the “Bio NeuroAutograph” simulating environment]. Penza: OAO «PNIEI», 2013, 27 p. Available at: http://pniei.rf/activity/science/noc/tm_IvanovAI.pdf
12. Ivanov A. I. Mnogomernaya neyrosetevaya obrabotka biometricheskikh dannykh s programmnym vosproizvedeniem effektov kvantovoy superpozitsii [Multidimensional neural network processing of biometric data with software reproduction of quantum superposition effects]. Penza: OAO «PNIEI», 2016, 133 p. Available at: http://pniei.pf/activity/science/BOOK16.pdf
13. Volchikhin V. I., Ivanov A. I., Yunin A. P., Malygina E. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2017, no. 4 (44), pp. 4–13.
14. Yunin A. P., Korneev O. V. Trudy nauchno-tekhnicheskoy konferentsii klastera penzenskikh predpriyatiy, obespechivayushchikh bezopasnost' informatsionnykh tekhnologiy [Proceedings of a scientific and technical conference of the cluster of Penza’s enterprises in the field of IT security]. Penza, 2016, vol. 10, pp. 40–42. Available at: http://pniei.rf/activity/science/BIT/T10-p40.pdf
15. Volchikhin V. I., Ivanov A. I. Vestnik Mordovskogo universiteta [Bulletin of Mordovia University]. 2017, vol. 27, no. 4, pp. 518–523.
|